Left Termination of the query pattern
flat_in_2(a, g)
w.r.t. the given Prolog program could not be shown:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
Clauses:
flat([], []).
flat(.([], T), R) :- flat(T, R).
flat(.(.(H, T), TT), .(H, R)) :- flat(.(T, TT), R).
Queries:
flat(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1)
U1_ag(x1, x2, x3) = U1_ag(x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1)
U1_ag(x1, x2, x3) = U1_ag(x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1)
U1_ag(x1, x2, x3) = U1_ag(x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x1, x5)
U1_AG(x1, x2, x3) = U1_AG(x3)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1)
U1_ag(x1, x2, x3) = U1_ag(x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x1, x5)
U1_AG(x1, x2, x3) = U1_AG(x3)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1)
U1_ag(x1, x2, x3) = U1_ag(x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
R is empty.
The argument filtering Pi contains the following mapping:
[] = []
.(x1, x2) = .(x1, x2)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(.(x1, x2)) = x1 + 2·x2
POL(FLAT_IN_AG(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
The TRS R consists of the following rules:none
s = FLAT_IN_AG(R) evaluates to t =FLAT_IN_AG(R)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(R) to FLAT_IN_AG(R).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1, x2)
U1_ag(x1, x2, x3) = U1_ag(x2, x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x4, x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1, x2)
U1_ag(x1, x2, x3) = U1_ag(x2, x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x4, x5)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1, x2)
U1_ag(x1, x2, x3) = U1_ag(x2, x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x4, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x1, x4, x5)
U1_AG(x1, x2, x3) = U1_AG(x2, x3)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1, x2)
U1_ag(x1, x2, x3) = U1_ag(x2, x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x4, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
U2_AG(x1, x2, x3, x4, x5) = U2_AG(x1, x4, x5)
U1_AG(x1, x2, x3) = U1_AG(x2, x3)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(x1, x2) = flat_in_ag(x2)
[] = []
flat_out_ag(x1, x2) = flat_out_ag(x1, x2)
U1_ag(x1, x2, x3) = U1_ag(x2, x3)
.(x1, x2) = .(x1, x2)
U2_ag(x1, x2, x3, x4, x5) = U2_ag(x1, x4, x5)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
R is empty.
The argument filtering Pi contains the following mapping:
[] = []
.(x1, x2) = .(x1, x2)
FLAT_IN_AG(x1, x2) = FLAT_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(.(x1, x2)) = x1 + 2·x2
POL(FLAT_IN_AG(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
The TRS R consists of the following rules:none
s = FLAT_IN_AG(R) evaluates to t =FLAT_IN_AG(R)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(R) to FLAT_IN_AG(R).